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This paper covers the development and application of a modal interaction analysis (MIA)
to investigate the plane wave transmission characteristics of a circular cylindrical sandwich
shell of the type used in the aerospace industry for satellite launch vehicles. The model is
capable of handling many high order structural and acoustic modes, and can be used to
investigate the sensitivity to di!erent structural sti!ness con"gurations, angles of incidence,
damping and cavity absorption. The model has been developed to predict the structural
response and transmitted noise when a number of discrete masses are applied to the shell.
The study presented considers a set of cases where blocking masses, having a total weight
equal to 8% of the cylinder weight, are attached to the cylinder. The simulations carried out
show a substantial reduction of the sound transmission in many of the "rst 15 one-third
octave frequency bands (frequency range 22)4}707 Hz). The blocking masses act on the
shape of the cylinder normal modes and their orientations with respect to the plane of the
incident wavenumber vector. In particular, the circumferential re-orientation reduces the
coupling between the incident acoustic "eld and the structural modes of the cylinder. The
modi"cation of the structural mode shapes, both in axial and circumferential directions, also
reduces the coupling between the cylinder modes and the acoustic modes of the interior.

Simulations show the e!ect of the number of structural and acoustic modes included on
the calculated frequency response, and indicate the number necessary for an accurate
prediction of the resonant and non-resonant sound transmission through the structure. In
particular, the e!ect of neglecting o!-resonance acoustic and structural modes is
investigated. It is shown that restricting the acoustic and structural modes to those having
natural frequencies within an interval of $40 and $60 Hz, respectively, of the excitation
frequency produces acceptably small errors in the transmission estimate. The simulations
also show that in order to represent accurately the coupling e!ect between the structural and
acoustic modes, for each acoustic mode of order m

a
, n

a
, p

a
(axial, circumferential and radial

order, respectively), it is necessary to account only for the structural modes with n
s
"n

a
and

m
s
"m

a
$a with a"1, 3, 5,2, a

max
. It is found that the time required to compute the

sound transmission in a frequency range of 0}3123 Hz, using the minimum number of
acoustic and structural modes required to compute an accurate response at each frequency,
is 3% of that necessary for the computation of the full response using all the structural and
acoustic modes with natural frequencies within the frequency range considered in the
analysis.

( 2001 Academic Press
1. INTRODUCTION

The assessment of the relative contribution to the transmission of sound by resonant and
non-resonant cylindrical shell vibration is an important and complex problem. Various
0022-460X/01/270259#39 $35.00/0 ( 2001 Academic Press
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models have been developed to analyze and predict the acoustic behaviour of aircraft
fuselages, the e!ect of resonances, and the divergence from mass-law transmission [1]. In
many applications, the external acoustic "eld is assumed either to be di!use, or is plane and
incident upon the structure at a speci"ed angle and direction. The structure, if sti!ened, may
be analyzed using a Rayleigh}Ritz formulation for its modal characteristics [2]. Koval [3]
investigated the transmission loss (TL) of an in"nitely long isotropic thin cylindrical shell as
a function of curvature, #ow and pressurization e!ects. He observed total scattering and
zero transmission as a function of #ow speed and internal and external speed of sound. The
transmission loss exhibited minima at the ring frequency and at the critical frequency of the
structure. Below the ring frequency, the cylinder resonances were found to a!ect the
transmission loss, and between the ring frequency and critical frequency the shell was found
to follow mass-law behaviour. Barbe et al. [4] used the analytical and numerical model
developed by Koval to investigate the e!ect of the zeros of the circular cylinder impedance
and explained why a change of slope and dips are observed in the transmission loss curves
at about the ring frequency. Blaise et al. [5] compared the transmission losses caused by
di!use "eld excitation and normally incident plane wave excitation. Koval [6] also
analyzed the transmission loss of an in"nitely long orthotropic thin cylindrical shell. Blaise
et al. [7] extended Koval's studies to the case of plane acoustic waves with two independent
angles of incidence in order to calculate the di!use "eld transmission coe$cient. Blaise and
Lesueur [8}10] have derived expressions for the acoustic transmission through 2-D and
3-D orthotropic multi-layered in"nite cylindrical shells.

Statistical models and techniques have also been used to estimate the sound power
transmitted into cavities [11]. Where only few modes of the structure and the cavity are
resonant in a frequency range of interest, the energy #ow between the individual structural
modes and the acoustic modes of the cavity is analyzed using the assumption of weak
coupling. In this case the sound transmission is analyzed using the assumption that the
natural frequencies and mode shapes of the structural modes are similar to the in vacuo
modes. The analysis allows for well-coupled modes in terms of closely spaced resonance
frequencies of the structural and acoustic modes and calculates band-averaged power into
the internal acoustic space. Reference [11] forms the basis of the analysis for the present
study, but the restriction of averaging the results over frequency bands is removed and
allows the e!ect of the sensitivity to frequency matching to be considered. Further
development of this form of analysis by Pope and Wilby [12] considered the transmission
of sound into non-resonant acoustic modes within a frequency band by evaluating
the band-averaged response of these modes in addition to that of the resonant acoustic
modes.

Structural modi"cation is one approach to changing the transmission loss. The e!ect of
increased damping [13] is to reduce the resonant structural response; this is observed to
raise the minima in the transmission loss at the resonances and also at the ring and
coincidence frequencies. Some bene"t in the mass-law controlled region is also observed.
Longitudinal sti!eners [14] appear to increase the cylinder transmission loss in the
mass-controlled region but with a consequence of dips at the stringer resonances. Dowell
[15] considered a double-wall cylindrical structure subject to the acoustic "eld, generated
by a propeller, which was expressed as a summation of circumferential waves. Bene"ts are
achieved if the inner shell is sti!er than the outer, so that it has smaller displacements, and if
the natural frequencies of the shells are separated (detuned). If the shells are fairly similar in
properties then they can be well coupled through the intervening #uid which can result in
greater transmission of noise. Aerospace structures of composite and sandwich construction
can be similarly analyzed in terms of the structural modes [16, 17], although the results
presented in reference [17] are for a composite with a soft viscoelastic core which introduces
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signi"cant structural damping. The present study concentrates on the analysis of cylindrical
sandwich shells with a sti! core, as used for spacecraft launcher construction, and the
possibility of noise control by mass changes.

Analytical models based on a modal expansion of the structural and acoustic "elds have
been developed and applied to the investigation of noise in a propeller driven aircraft
[18}20]. Three di!erent models of sound transmission through the fuselage of an aircraft
are available, depending on the frequency range of the problem being considered [21]. At
low frequencies, when the longitudinal and circumferential wavelength of the fuselage skin
#exural vibrations are longer than the sti!eners spacing (ring frames and stringers), the
sound transmission into the cabin may be calculated using a &&smeared'' shell model. This
type of model represents the sound transmission through the fuselage considered as an
equivalent orthotropic cylindrical skin whose dynamics incorporate the mass and sti!ness
e!ects of the sti!eners. Alternatively, one can analyze a monocoque shell with rings and
sti!eners treated as discrete structural elements. For higher frequencies, in the
low-intermediate frequency range, the vibrations of the frames become less important so
that only the e!ects of the fuselage skin and longitudinal stringers need to be considered in
the calculation of the noise transmission of a fuselage section between two adjacent
frames. For relatively high frequencies the dynamics of the stringers no longer strongly
a!ect the fuselage skin vibration. In order to calculate the noise transmission it is then
necessary to consider only a section of the fuselage skin con"ned between two adjacent
frames and two adjacent stringers. A statistical energy approach is then appropriate as the
number of modal contributions is high and individual modal couplings cannot be
individually formulated. Instead, the averaged coupling and response is calculated in
frequency bands [1].

The study presented here considers the acoustic response of a honeycomb cylindrical
shell, "lled with air, which is externally excited by a plane acoustic wave. In particular, the
e!ects of blocking masses placed on the surface of the cylinder is investigated in order to
assess the possibility of reducing the external coupling (acoustic plane wave
excitation*cylinder response) and internal coupling (cylinder vibration*cavity response)
of the system. The goal is to reduce the sound transmission to the interior of the cylinder.
For the purposes of this study a model has been developed which is valid in the
low-intermediate frequency range and allows the steady state acoustic response of the
cavity to be calculated at discrete frequencies for harmonic external plane waves of
unit amplitude. In this way, the noise reduction for one-third octave bands has been
evaluated.

The noise reduction evaluated for the reference case of the cylinder without masses is
compared with the noise reduction of a set of cases where the cylinder is modi"ed by the
addition of a set of blocking masses. The dimensions of the cylinder and the geometrical and
physical properties of the honeycomb wall have been selected with reference to a scale
model of the payload section of the ARIANE 5 launcher. The e!ects produced by the
blocking masses, on both the external and internal coupling, are then analyzed in detail by
considering the mode shapes of the cylinder with masses.

The e!ect of the number of acoustic modes (&&acoustic -agging''), or structural modes
(&&structural -agging'' and &&coupling -agging''), selected to compute the response at each
discrete frequency is also assessed. A reduction of the number of acoustic and structural
modes taken into account in the modal formulation gives considerable advantages in terms
of computational speed. Cacciolati et al. [22] "rst considered the possibility of reducing the
computational time required to calculate the sound transmission to the interior of
a cylinder with the modal method. They proposed to select the structural and acoustic
modes with strongest coupling either in the frequency or spatial domains.
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2. MATHEMATICAL MODEL AND ANALYSIS

The method used in this study is modal interaction analysis (MIA) [23]. It is based upon
a circumferential and axial decomposition of the external noise "eld, a modal description of
the fairing modelled as a honeycomb sandwich cylindrical shell, and a modal description of
the interior acoustic cavity. Dissipation and radiation damping of the shell are included
and, in addition, one can represent the case when the internal volume is partly "lled by
a payload. This form of analysis is more appropriate than statistical energy analysis (SEA),
since the restriction to di!use external acoustic "elds is not necessary, and the frequency
region of most concern, where there is low modal overlap, can be investigated in detail. In
addition, development of the method can allow for mass non-uniformity, which thereby
perturbs the natural frequencies of the structure and also causes the structural modes to be
modi"ed, thereby altering the coupling to the external sound "eld.

The main assumption of the analysis is that the coupling between the interior acoustic
cavity modes and the shell structural modes is weak. The fully coupled equations of
motion of the acoustic and structural modes are replaced by simpli"ed uncoupled
equations that express the response of the in vacuo structural modes and the response
of the acoustic cavity modes to excitation by the structural motion [15, 24]. This
approximation yields maxima in the response near the uncoupled mode resonance
frequencies instead of at frequencies corresponding to the resonance frequencies of the
coupled system, although the assumption is reasonable when the internal acoustic
resonances are well damped [15].

Due to the simple cylindrical geometry, the modes of the uniform shell and interior cavity
have sinusoidal/cosinusoidal circumferential variation of integer orders n

s
and these modes

are orthogonal for mode pairs of di!erent order. Simple spatial selection occurs such that
structural modes of circumferential order n

s
will only contribute to the internal acoustic

"eld of the same circumferential order n
a
"n

s
. This selectivity is not available when the shell

becomes non-uniform as each mode of the shell can possess a circumferential variation
composed of a number of di!erent circumferential orders, as in a Fourier expansion.

The MIA formulation can be further simpli"ed by selecting at each frequency a subset of
the modes with natural frequencies within the frequency range considered in the analysis.
For example the noise transmission at each frequency can be calculated by taking into
account only the structural and/or acoustic modes with natural frequencies close to the
frequency considered, although this is not necessarily accurate.

Figure 1 shows the idealized model excited by an external incident acoustic plane wave
having a wavenumber vector at an angle /

i
to the cylinder axis and h

i
in the azimuthal

direction. The blocked pressure "eld is calculated on the cylinder surface using a di!raction
model. The incident "eld is decomposed into a series of cylindrical components relative to
each circumferential structural mode of order n

s
. Each of these components is a function of

frequency termed the &&scattering coe$cient'' for circumferential order n
s
. The generalized

forces acting on the uncoupled, in vacuo structural modes of the cylinder are then evaluated.
The response of the shell, in terms of these structural modes, is calculated and then the
response of the interior acoustic cavity, in terms of the uncoupled acoustic modes, is
calculated from the shell motion acting at the boundary of the acoustic volume.

The analysis, based on references [23, 24], expresses the shell response and interior
acoustic cavity response in terms of the in vacuo structural modes W

n
"W

msns
and uncoupled

interior cavity modes U
p
"U

manapa
, for the #uid in the cavity with rigid boundaries. The shell

response is represented by the summation +
n
w

n
W

n
, while the interior pressure is

represented by +
p
p
p
U

p
where w

n
and p

p
are the modal displacement and pressure

generalized co-ordinates respectively. Substituting the modal terms into the in vacuo



Figure 1. Co-ordinate system of the model.
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equations of motion of the structure and the #uid, multiplying by the corresponding mode
shapes and applying orthogonality of the modes, the following modal equations for the
structure and the #uid are obtained [23, 24]:

wK
n
#u2

n
w
n
"

S

K
n

+
p

p
p
C

np
#

F
n

K
n

, (1)

pK
p
#u2

p
p
p
"A

oc2S

K
p
B+

n

wK
n
C

np
#

oc2QQ
p

K
p

, (2)

where F
n
is the generalized force acting on the cylinder surface, u

n
is the natural frequency of

a cylinder mode, C
np

is a dimensionless coupling coe$cient, S is the cylinder surface area, K
n

is the normalization (generalized mass) for the modes of the cylinder, u
p

is the natural
frequency of an acoustic mode, o is the mean density of the #uid, c is the speed of sound in
the #uid, K

p
is the normalization (generalized mass) for the modes of the acoustic cavity and

QQ
p

is the generalized acoustic source strength, if any, in the cavity.
The details on the calculation of the natural frequencies and mode shapes, of the structure

and the internal #uid, and the derivation of the forcing terms and coupling terms are
presented in the following sections. Where the structure is non-uniform, the mode shapes
are themselves given by a series summation and each term in the series can be coupled to the
appropriate external and internal acoustic "elds by equations (1) and (2) above.

2.1. CALCULATION OF THE NATURAL FREQUENCIES AND NATURAL MODES OF A UNIFORM

HONEYCOMB CYLINDER

The simplest cylindrical sandwich shell, supported on shear diaphragm ends, has modes
that can be described by three components of displacement (radial, axial and tangential)
and two rotations. The external acoustic "eld excites the cylinder in bending. Bending wave
motion is characterized by both radial displacement, w(r, h, t), and angular displacements,
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h
x
(r, h, t) and h

y
(r, h, t). However, the coupling between the cylinder and the #uid in the

cavity is determined only by the radial vibration of the cylinder. Thus, only the radial
motion of the cylinder is considered. The radial displacement of the cylinder has
circumferential variation given by sin n

s
h and cos n

s
h, to allow for unspeci"ed orientation,

and variation sin (m
s
nx/¸) in the axial direction. Substituting for the functions of the "ve

components of displacement into the boundary conditions at the ends of a cylinder of length
¸ produces "ve equations for modes of order (m

s
, n

s
) that satisfy the following matrix

equations which can be assembled in an eigenvalue form:

Ax
j
"K

j
Bx

j
, (3)

where

K
j
"

j
uj

j
vj

0

j
wj

0 jhxj
jhyj

, x
j
"

i
g
g
j
g
g
k

x
uj

x
vj

x
wj

xhxj
xhyj

e
g
g
f
g
g
h

. (4)

j
uj
"u2

uj
, j

vj
"u2

vj
, j

wj
"u2

wj
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squared, equal to the eigenvalues, and x
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, xhxj and xhyj are the jth natural mode
amplitudes, respectively, for the x, y, z, h
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and h

y
degrees of freedom, equivalent to the

eigenvectors of the problem. Matrices A and B are given in reference [25]. The "ve modes
found for each particular (m

s
, n

s
) pair correspond to modes that possess displacements with

both radial displacement, and in-plane displacement and also rotations. There is a selection
of the modes that are primarily radial as the other modes are either not excited or are at
much higher frequencies and are not of interest with insigni"cant radial components. The
selected modes are subsequently used in a series expansion in the following section.

2.2. CALCULATION OF THE NATURAL FREQUENCIES AND NORMAL MODES

OF A HONEYCOMB CYLINDER WITH ATTACHED POINT MASSES

The modes of the uniform sandwich cylinder are used in a Rayleigh}Ritz analysis to
include the e!ect of an additional number of discrete point masses. The potential energy of
the system is assumed to be unaltered by the mass, with changes only to the kinetic energy
of the system.

The displacement of the non-uniform shell is expressed in an approximate series form as
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where m
s
and n

s
represent the structural modes with n

s
circumferential wavelengths and

m
s
half-axial wavelengths, p

msns
, q

msns
are the generalized co-ordinates of the even and odd

modes in h, A
msns

B
msns

and C
msns

are the relative contributions of the u, v and w displacements
in the &&new'' structural mode; "nally u, v, w are the in-plane (axial), tangential and #exural
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(normal to circumference) components of the mode. It is a necessary requirement to include
both even and odd functions in h to allow the &&new'' modes of the non-uniform shell to be
orientated circumferentially due to the non-uniform mass distribution.

The modes of the uniform shell are orthogonal which implies that the kinetic and strain
energy can be expressed in terms of diagonal mass and sti!ness matrices as follows:
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The attached discrete point masses contribute only to the kinetic energy. For a mass
m

k
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i
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k
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as shown in Figure 1), the associated kinetic energy is given by the

following relation, assuming negligible rotational inertia:
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which, similar to equation (6), can be expressed as follows:
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For example, the elements of the "rst row of the matrix [M
k
] are calculated as follows:
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The equations of motion for the free vibration of the cylinder with masses is then given,
using Lagrange's equations, as d/dt(L¹
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where the introduction of the point masses has resulted in coupled equations in the original
modal expansion. Assuming harmonic time dependence, exp( jut), for the p
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The terms u
rs

and v
rs

are called the &new' natural frequencies and structural modes of the
cylinder respectively.

2.3. THE EXTERNAL FORCE ON THE CYLINDER DUE TO THE ACOUSTIC FIELD

The generalized force F
rs
(u, /

i
) exciting each structural mode r

s
is calculated for the case

of an incident plane wave acoustic "eld at a frequency u and with wavenumber vector at an
incidence angle /

i
to the axis of the cylindrical shell, and lying in the plane (x, h

i
"0) [23].

The generalized force can be expressed as a sum of products of the scattering coe$cients of
the acoustic "eld and an external coupling coe$cient for a unit incident pressure amplitude
component with speci"ed axial wavenumber and circumferential order.

The scattering coe$cient p
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) of the circumferential cosine component of order n
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an acoustic plane wave is [23]
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is the "rst derivative with respect to the argument of the Hankel function of the "rst kind
and nth order. (NB the scattering coe$cient p
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) is dependent on the acoustic

wavenumber, k"u/c, and the normal wavenumber k
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Figure 2 shows a set of nine curves for the scattering coe$cients p
ns

with n
s
"0}8. These

scattering coe$cients have been calculated with reference to the uniform cylinder analyzed
in section 3 that has external radius R

e
"1)7 m and length ¸"5)6 m. The external acoustic

"eld consists of a plane wave with angle of incidence /
i
"453. The nine plots in Figure

2 suggest that, except for the breathing mode of order n
s
"0, the scattering coe$cient

behaves similar to a &&low-pass "lter'' with a cut-o! frequency that increases as the



Figure 2. Scattering coe$cient as a function of frequency when the acoustic plane wave incidence angle is 453
calculated for di!erent values of n

s
.
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circumferential modal order n
s
rises. The scattering coe$cient is characterized by a smooth

peak close to the cut-o! frequency and its amplitude gradually falls to zero as the frequency
tends to in"nity.

The nine graphs in Figure 3 show the variation of the scattering coe$cients with the
incidence angle of the external acoustic "eld, /

i
calculated at a frequency of 200 Hz. The

scattering coe$cient p
ns
(u, /

i
) for n

s
"0 varies with a &&saddle function'' from a maximum of

1 for /
i
"03 and 1803 (grazing angles) and a minimum of about 0)4 for /

i
"903. For higher

circumferential modal order n
s
the saddle function is restricted to an increasingly smaller

angle range /
s
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)(1803!/
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). For angles outside this band, i.e., for /

i
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and
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i
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s
), the scattering coe$cient is very low. The circumferential mode order

increases as the range becomes smaller and the maximum of the saddle function is also
reduced. For high enough values of n

s
, for example n

s
"7, 8,2, the saddle function of the

scattering coe$cient falls o! to a smooth peak, as can be seen in the lower graphs in Figure
3.

The excitation of the structural modes has been described by the external coupling
coe$cient Cext

msns
(u, /

i
), for a unit amplitude pressure distribution on the cylinder surface,

H
msns

, that has axial wavenumber k
x
"k cos/

i
and circumferential order n

s
:

Cext
msns

(u, /
i
)"

1

S
e
P
Se

H
msns

(r
s
, /

i
)W

msns
(r
s
) dS

e
"

1

S
e
P
Se

cos(n
s
h)e~+kxx cos(n

s
h) sinA

m
s
nx

¸ BdS
e
.

(15)



Figure 3. Scattering coe$cient as a function of the incidence angle of the acoustic plane wave at a frequency of
200 Hz calculated for di!erent values of n

s
.
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The external "eld is assumed symmetric with respect to h
i
"03, hence the excitation couples

into the cosine components of the structural mode W
msns

only. Therefore, the external
coupling coe$cient Cext

msns
(u, /

i
) is given by

Cext
msns

(u, /
i
)"

m
s
n

a
ns
¸2 C

(!1)m e~+kxL!1

k2
x
!(m

s
n/¸)2 D, (16)

where if n
s
"0 then a

ns
"1, otherwise a

ns
"2. In the particular case where k

x
"m

s
n/¸ the

asymptotic value of the coupling coe$cient Cext
msns

(u, /
i
) has been calculated by deriving the

indeterminate limit for k
x
Pm

s
n/¸ with l'Ho( pital's rule, so that Cext

msns
(u, /

i
)"!j2a

ns
.

Figure 4 shows a set of nine curves for the external coupling coe$cients Cext
msns

(u, /
i
) with

m
s
"1}9 and n

s
"0. Also, in this case, the dimensions of the cylinder studied in section 3

have been used. The nine curves indicate that the external coupling coe$cient behaves as
series of &&band pass "lters''. Indeed, the coupling coe$cient is characterized by a series of
rounded peaks which are symmetric with reference to the vertical axis of the plot and whose
amplitude goes from zero at the frequency boundaries of each band "lter f

c
$D, to

a maximum at the centre frequency of each band "lter f
c
. The maximum value of these peaks

is not constant. The band pass "lter has maximum amplitude dependent upon the mode
number m

s
. For m

s
"1, the higher peak is for the band pass "lter with centre frequency

equal zero, f
c
"0 Hz. The frequency for the peak maximum amplitude rises as the mode

number n
s
rises.

The nine curves in Figure 5 show the variation of the external coupling coe$cients with
reference to the incidence angle of the external acoustic "eld /

i
calculated at a discrete



Figure 4. External coupling coe$cient as a function of frequency when the acoustic plane wave incidence angle
is 453 calculated for di!erent values of m

s
.

Figure 5. External coupling coe$cient as a function of the incidence angle of the acoustic plane wave at
a frequency of 200 Hz calculated for di!erent values of m

s
.
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frequency of 200 Hz. The external coupling coe$cient function Cext
msns

(u, /
i
) for m

s
"1 is

characterized by a smooth peak in an angle range /
e
)/

i
)(1803!/

e
), where /

e
:603,

with a maximum for /
i
"903. Outside the angle band of this &&central peak'' the external

coupling factor is characterized by a series of peaks which, however, are relatively small. As
the number of axial mode order m

s
rises, the number of smoothed peaks or ripples in the

angle band /
e
)/

i
)(1803!/

e
) increases. For example, for m

s
"4 there are four peaks

between 253)/
i
)1553. In general, the peaks with maximum amplitude are those

corresponding to the lower and higher angles of incidence. The others tend to have much
smaller peak amplitudes. In particular, for m

s
"7, the external peaks occur for grazing

angles and the central peaks have particularly low amplitude indicating a small coupling
e!ect for angle of incidence close to normal. For higher axial mode orders there are no
&&external peaks'' and a series of relatively small internal peaks are obtained for
/
i
"03!1803.
The contribution to the total generalized force F

rs
(u, /

i
) in the r

s
th mode, due to the

m
s
and n

s
modal orders can be expressed as follows:

F
rsmsns

(u, /)"S
e
Cext

msns
(u, /

i
)p

rsmsns
p
ns
(u, /

i
) , (17)

where p
rsmsns

is the relative amplitude of the (m
s
, n

s
) cosine component of the r

s
th mode. So

the total generalized force in the r
s
th mode, summed over all of the components of the

external "eld, is

F
rs
(u, /

i
)"2nR

e

Ns
+

ns/0

pN
ns

Ms
+

ms/1

p
rsmsns

m
s
n

¸ C
(!1)ms e~+xxL!1

k2
x
!(m

s
n/¸)2 D. (18)

According to the limit derived for equation (16), when k
x
"m

s
n/¸ the total generalized force

in the r
s
th mode is given by F

rs
(u, /

i
)"2nR

e
+Ns

ns/0
pN
ns

+Ms
ms/1

p
rsmsns

(!j/2a
ns
). In the speci"c

case of a cylinder without masses each new structural mode exactly corresponds to
a cylinder mode of order (m

s
, n

s
). In this case, the external excitation evaluated for a speci"c

new structural mode r
s
, that is, for a speci"c cylinder mode of order (m

s
, n

s
), is given by the

product of the scattering coe$cient p
ns

and the external coupling coe$cient Cext
msns

.
According to the plots shown above, the combination of the scattering and external

coupling factors produces a &&"ltering e!ect'' where at each frequency and at each incidence
angle /

i
only a limited number of structural modes are actually well coupled to the external

acoustic plane wave. Indeed at certain frequencies, and for certain incidence angles /
i
, this

"ltering e!ect can be so e!ective that even the few modes coupled to the external acoustic
"eld are actually weakly coupled. The idea explored in this paper of attaching blocking
masses on the cylinder in such a way as to modify the structural modes was also aimed at
reducing the response of these modes to the external "eld at certain frequencies.

2.4. CALCULATION OF THE UNCOUPLED SHELL MODAL RESPONSE ¹
rsmsns

(u, /) FOR ¹HE r
s

MODE OF THE SHELL THAT HAS AN (m
s
, n

s
) COMPONENT

For the general case with each mode of the shell expressed as a sum of circumferential and
axial orders, the response can be calculated using superposition of the response of the mode
due to the forcing in each individual (m

s
, n

s
) component

¹
rsmsns

(u, /)"C
F
rs
p
rsmsns

cos n
s
h

K
rs
(u2

rs
!u2#jg

msns
u

rs
u)

#

F
rs
q
rsmsns

sin n
s
h

K
rs
(u2

rs
!u2#jg

msns
u

rs
u)D sin

m
s
nx

¸

, (19)
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where K
rs

is the modal mass which is given by

K
rs
"o

c
hP

S
C

Ms
+

ms/1

Ns
+

ns/0
Aprsmsns

cos n
s
h sinA

m
s
nx

¸ B#q
rsmsns

sin n
s
h sinA

m
s
nx

¸ BBD
2
dS

i

"o
c
hR

i

n¸
2

[(p2
rs10

#p2
rs20

#2#p2
rsMs0

)#1]. (20)

Therefore, inserting d
rs
"p2

rs10
#p2

rs20
#2#p2

rsMs0
and using the normalization of the

modes:

K
rs
"(1#d

rs
)o

c
h

2nR
i
¸

4
"(1#d

rs
)
M

cyl
4

. (21)

g
msns

is the modal loss factor, including structural and acoustic (radiation) losses, which is
given by the following relations that are dependent upon wavenumber matching at
a particular frequency [23]:

(1) If A
m

s
n

¸ B
2
#A

n
s

R
i
B
2
'A

u
msns
c B

2
and if A

n
s

R
i
B
2
(A

u
msns
c B

2

g
msns

"

64o
a
¸

m2
s
n4MM

cyl

#g
str

(22)

(2) If A
m

s
n

¸ B
2
#A

n
s

R
i
B
2
'A

u
msns
c B

2
and if A

n
s

R
i
B
2
'A

u
msns
c B

2
, i.e., below coincidence

g
msns

"g
str

. (23)

(3) If A
m

s
n

¸ B
2
#A

n
s

R
i
B
2
(A

u
msns
c B

2

g
msns

"

o
a
c

u
msns

MM
cyl

#g
str

, (24)

where MM
cyl
"M

cyl
/S

i
is the mass per unit area of the cylinder with honeycomb wall. It is

possible to "nd the total response in an (m
s
, n

s
) structural distribution by summing over all

the r
s
modes, i.e.,

¹
msns

(u, /)"C
Rs
+

rs/1
A

F
rs
p
rsmsns

cos n
s
h

K
rs
(u2

rs
!u2#jg

msns
u

rs
u)

#

F
rs
q
rsmsns

sin n
s
h

K
rs
(u2

rs
!u2#jg

msns
u

rs
u)BD sin

m
s
nx

¸

.

(25)

The response in the (m
s
, n

s
)th component can therefore be written in the form:

¹
msns

(u, /)"[a
msns

cos n
s
h#b

msns
sin n

s
h] sin

m
s
nx

¸

, (26)

where

a
msns

"

Rs
+

rs/1

F
rs
(u, /

i
)p

rsmsns
K

rs
(u2

rs
!u2#jg

msns
u

rs
u)

(27)
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with m
s
"1, 2,2, M and n

s
"0, 1, 2,2,N

s
; and

b
msns

"

Rs
+

rs/1

F
rs
(u, /

i
)q

rsmsns
K

rs
(u2

rs
!u2#jg

msns
u

rs
u)

(28)

with m
s
"1, 2,2, M

s
and n

s
"1, 2,2,N

s
. The a

msns
and b

msns
terms are equivalent to the

modal generalized co-ordinate in a particular (m
s
, n

s
) component, equal to the generalized

modal force multiplied by the equivalent modal receptance. It is preferable to consider the
response in this form as this can be coupled more straightforwardly to the internal acoustic
modes, rather than the structural response in terms of new modes and their corresponding
amplitudes.

2.5. COUPLING OF STRUCTURAL AND ACOUSTIC MODES

The calculation of the coupling factor C int
msnsmanapa

between the cavity acoustic modes of
order (m

a
, n

a
, p

a
) and the shell structural modes of order (m

s
, n

s
) is given by the integral [23,

24]

C int
msnsmanapa

"

1

S
i
P
Si

W
msns

(r
s
)U

manapa
(r
s
) dS, (29)

which, for even circumferential modes (cosine component), gives

C int
msnsmanapa

"

1

S
i
P
Si

sin
m

s
nx

¸

cos n
s
h cos

m
a
nx

¸

cos n
a
h J

na
(j

pana
) R

i
dhdz , (30)

where J
na

is the Bessel function of "rst kind of order n
a
and the coe$cients j

pana
can be found

in reference [26]. For odd circumferential modes (sine component) equation (30) becomes

C int
msnsmanapa

"

1

S
i
P
Si

sin
m

s
nx

¸

sin n
s
h cos

m
a
nx

¸

sin n
a
h J

na
(j

pana
)R

i
dhdz (31)

with n
s
"0, 1,2, N

s
; n

a
"0, 1,2,N

a
; m

s
"1, 2,2, M

s
and m

a
"0, 1,2, M

a
. Once the

integrals into equations (30) and (31) are calculated, the sine and cosine components can be
expressed as follows:

C int
msnsmanapa

"G
(1/n)

n/0
(1/2n)

nO0
H

m
s

m2
a
!m2

s

[(!1)ma`ms!1] J
na

(j
pana

) (32)

with n
s
"n

a
"0, 1, 2,2,N and

C int
msns/namanapa

"A
1

2nB
m

s
m2

a
!m2

s

[(!1)ma`ms!1] J
na
(j

pana
) (33)

with n
s
"n

a
"1, 2,2,N. The terms are equivalent except for the breathing modes of the

shell n
s
"0, that only exist for the cosine component. If m

s
"m

a
, m

a
$2, m

a
$4,2 then

C int
msmanapa

"0
Table 1 shows the values assumed by the coupling coe$cient C int assuming J

na
(j

pana
)"1.

This Table shows that for each acoustic mode m
a
the largest coupling term is given by the

two structural modes where m
s
"m

a
#1 and m

a
!1. In general, for any acoustic mode m

a
the coupling coe$cient is positive if m

s
'm

a
and it is negative if m

s
(m

a
. The largest



TABLE 1

Internal coupling coe.cient C int assuming J
na
(j

na,pa
)"1

m
s

m
a
"0 m

a
"1 m

a
"2 m

a
"3 m

a
"4 m

a
"5 m

a
"6 m

a
"7 m

a
"8 m

a
"9

1 0)3183 0 !0)1061 0 !0)0212 0 !0)0091 0 !0)0051 0
2 0 0)2122 0 !0)1273 0 !0)0303 0 !0)0141 0 !0)0083
3 0)1061 0 0)1910 0 !0)1364 0 !0)0354 0 !0)0174 0
4 0 0)0849 0 0)1819 0 !0)1415 0 !0)0386 0 !0)0196
5 0)0637 0 0)0758 0 0)1768 0 !0)1447 0 !0)0408 0
6 0 0)0546 0 0)0707 0 0)1736 0 !0)1469 0 !0)0424
7 0)0455 0 0)0495 0 0)0675 0 0)1714 0 !0)1485 0
8 0 0)0404 0 0)0463 0 0)0653 0 0)1698 0 !0)1498
9 0)0354 0 0)0372 0 0)0441 0 0)0637 0 0)1685 0

10 0 0)0322 0 0)0350 0 0)0424 0 0)0624 0 0)1675
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coupling coe$cients, given by m
s
"m

a
$1, converge, respectively, to $1/2n as the

acoustic mode order m
a
tends to in"nity.

2.6. CALCULATION OF THE ACOUSTIC RESPONSE OF THE CAVITY AS SOUND PRESSURE

The steady state harmonic response in the acoustic cavity mode U
manapa

can be written in
the following way:

p
manapa

(r, h, x, u)"
o
a
c2S

i
K

manapa

U
manapa

[u2
manapa

!u2#juu
manapa

g
manapa

]
F
manapa

, (34)

where F
manapa

is the forcing term relative to the (m
a
, n

a
, p

a
) acoustic cavity mode and the

natural frequencies u
manapa

and acoustic modes U
manapa

are given in Appendix A. The modal
mass K

manapa
is given by

K
manapa

"o
a P

V

U2
manapa

(r, h, x) d<, (35)

where the integral is calculated in Appendix A. The acoustic mode loss factor g
manapa

can be
derived from the quality factor Q giving the ratio of the energy stored divided by the energy
dissipated per cycle so that [27]:

g
manapa

"

1

Q
"

Du
manapa

u
manapa

, (36)

where Du
manapa

is the frequency bandwidth relative to the mode (m
a
, n

a
, p

a
). The frequency

bandwidth can be derived from the decay time using the following formula [27]:

Du
manapa

"

2)2

n¹
60

, (37)

where ¹
60

is the reverberation time which represents the time required for the sound energy
density level to decay by 60 dB from its initial value. The reverberation time is given by the
following expression [27]:

¹
60
"

55)25<
cav

cA
, (38)
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where A is the absorption, <
cav

"nR2
i
¸ is the volume of the cylindrical cavity and c is the

speed of sound of the #uid in the cavity. Using equations (36)}(38) and assuming the #uid in
the cavity to be air at 203C, the expression for the acoustic mode loss factor g

manapa
is found

to be

g
manapa

"

86)4cA

<
cav

u
manapa

. (39)

The results presented in Section 3 have been derived assuming that the absorption of the
cylinder wall is given by A"0)5 m2 and assuming the #uid in the cavity to be air at 203C so
that the speed of sound is given by c"343 m/s.

The forcing term, in equation (34), is given by the vibration of the cylinder in the (m
s
, n

s
)

component of the same circumferential order of the acoustic normal mode U
manapa

.
Therefore, equation (34) reduces to

p
manapa

(r, h, x, u)"
o
a
c2S

i
u2

K
manapa

cos (m
a
nx/¸) J
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R/R

i
)

[u2
manapa

!u2#juu
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g
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]

]
Ms
+

ms/0

Rs
+

rs/1

(a
rsmsns

cos n
a
h#b

rsmsns
sin n

a
h)C int

msnsmanapa
e+ut (40)

with n
s
"n

a
. Note that this is the response of the pressure "eld with (m

a
, n

a
, p

a
) order. The

total pressure is summed over all cavity modes, i.e., the summation +Ma
ma/0

+Na
na/0

+Pa
pa/0

is
introduced. Then the pressure at a point in the cavity can be written in the following way:

p (r, h, x, u)"u2o
a
c2S

i

Ma
+

ma/0

Na
+

na/0

Pa
+

pa/0
C

cos (m
a
nx/¸) J

na
(j

pana
R/R

i
)

K
manapa

[u2
manapa

!u2#juu
manapa

g
manapa

]

]
Ms
+

ms/0

(a
msns/na

cos n
a
h#b

msns/na
sin n

a
h)C int

msns/namanapaD e+ut. (41)

N.B. +Ms
ms/1

(a
msns/na

cos n
a
h#b

msns/na
sin n

a
h) is of circumferential order n

a
and the

summation gives a result of the form [amplitude] cos n
a
(h!e), where e is the orientation of

the structural response in the n
a
order. For a uniform shell one would expect the structural

response to be orientated circumferentially to match the direction of the incident acoustic
"eld. Therefore, by altering the structure there is a possibility of minimizing the spatial
coupling.

3. CALCULATED NOISE REDUCTION

To assess the e!ect of mass addition and angle of plane wave incidence, it is appropriate
to evaluate the spatial and temporal mean square pressure in the cavity and the noise
reduction provided by the structure. The temporal mean square pressure in the cylindrical
cavity when the external excitation is harmonic is given by the relation

Sp2(r, t)T
t
"1

2
Dp(r, u) D2"1

2
p* (r, u)p (r, u), (42)

which, applying the spatial mean square evaluation, becomes
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Vol,t

"

1

< P
V

1
2

Dp (r, u) D2d<"
1

< P
L

0
P

2n

0
P

Ri

0

1
2
p*(r, u)p (r, u)rdrdhdx . (43)
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Using equation (41), the triple integral of equation (43) gives
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msns/namanapa K

2
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3 K
Ms
+

ms/1

b
msns/na

C int
msns/namanapa K

2

H , (44)

where if m
a
"0 then c

1
"1 and if m

a
O0 then c

1
"1/2. Also, if n

s
"0 then c

2
"2 and

c
3
"0 and if n

s
O0 then c

2
"1 and c

3
"1.

The parameter chosen to represent the sound transmission to the cylindrical cavity is the
noise reduction NR which is de"ned as follows, allowing for unit amplitude external
incident sound "eld [24]:

NR(u)"!10 log
10

(Sp2 (r, t)T
Vol,t

) . (45)

The calculations have been performed both at discrete frequencies and for third-octave
frequency bands, to allow the in#uence of modal separation and overlap to be investigated
and to give an overall view of the sound reduction e!ects achieved with blocking masses.
The dimensions and physical properties of the cylinder considered have been selected with
reference to a 1 : 5 scale model of the payload fairing section of the ARIANE 5 launcher.
Table 2 summarizes the dimensions of the cylinder according to the notation shown in
Figure 1. Also, Table 2 details the thickness and physical properties of the two skins and
honeycomb core of the sandwich construction. The ring frequency is approximately 208 Hz.

The in#uence on the noise reduction has been investigated for an acoustic plane wave
incident at an angle of /

i
"453 to the axis of the cylinder, the results at this angle being

indicative of the di!use "eld performance [24].
The number of modes that are required in the calculation for the structural response and

cavity response has been investigated. Due to the higher structural modal density and the
TABLE 2

Geometry and physical properties of the cylinder with honeycomb wall

Parameter Value

Internal radius R
i
"1)7 m

Length ¸"5)6 m
Thickness of outer faceplate t

1
"0)88 mm

Thickness of inner faceplate t
2
"0)88 mm

Thickness of core t
3
"24 mm

Density of outer faceplate o
1
"1700 kg/m3

Density of inner faceplate o
2
"1700 kg/m3

Density of core o
3
"48)7 kg/m3

Young's modulus along axial direction (skin) E
1x
"E

2x
"66)3]109 N/m2

Young's modulus along circumferential direction (skin) E
1h"E

2h"20)4]109 N/m2
The Poisson ratio along axial direction (skin) l

1x
"l

2x
"0)31

Shear modulus along axial direction (skin) G
1x
"G

2x
"12)4]109 N/m2

Shear modulus along axial direction (core) G
3x
"140]106 N/m2

Shear modulus along circumferential direction (core) G
3h"80]106 N/m2

Structural loss factor g
str
"0)01
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form of the external and internal structural}acoustic couplings, it is important to include
many non-resonant structural modes in the calculation of the response, whilst the number
of acoustic modes taken into account can be reduced to include only those whose natural
frequencies lie within a reasonable bandwidth about the frequency of the excitation being
considered. Results are given showing the sensitivity of these approximations.

3.1. SPECTRUM OF THE NOISE REDUCTION FOR THE CYLINDER WITHOUT MASSES

In this section the spectrum of the noise reduction for a cylinder without masses is
presented and analyzed. Figure 6 shows the noise reduction in a frequency range 0}353 Hz
for the uniform cylinder. According to the formulation for the sound transmission to the
cylinder interior described in section 2, there are two main factors that determine the
spectrum shown: "rst, the acoustic excitation of the cylinder (see section 2.3) and second, the
weakly coupled response of the cylinder and the air in the interior (sections 2.4}2.7). The
e!ectiveness of the second factor depends on the coupling between the cylinder and internal
cavity modes and the response of each structural and acoustic mode which actually
decrease as either the acoustic or structural mode is further and further o!-resonance.

In Figure 6, the values of the frequencies where relatively low noise reductions are
achieved have been marked. Comparing these values with the calculated natural frequencies
of the uncoupled interior acoustic cavity (see Table 3) and the natural frequencies for the
uncoupled cylinder (see Table 4) it is evident that the majority of the minima are closely
related to natural frequencies of the interior cavity as indicated by the * symbols in Table 3.
Table 5 lists, in the "rst column, the eight minima frequencies marked in Figure 6. Columns
2 and 3 list, respectively, the closest cavity natural frequencies to each of the eight
resonances and the di!erence between the minima and acoustic natural frequencies
Df

a
"f!f

manapa
. Columns 4 and 5 list, respectively, the cylinder natural frequencies that
Figure 6. Noise reduction for the honeycomb cylinder without masses excited by a plane acoustic wave of unit
amplitude and incidence angle /

i
"453.



TABLE 3

Acoustic natural frequencies of the cylindrical cavity (Hz)

m
a

n
a

p
a

f
a

m
a

n
a

p
a

f
a

m
a

n
a

p
a

f
a

m
a

n
a

p
a

f
a

0 0 0 0 7 0 0 214)3 1 1 2 275)8 9 1 1 324)4
1 0 0 30)6 2 5 0 214)9 6 5 0 276)0 2 2 2 325)9
0 1 0 59)0* 0 2 1 215)3 1 7 0 277)1 8 2 1 326)1
2 0 0 61)2 1 2 1 217)5 8 3 0 279)6 0 0 3 326)6
1 1 0 66)5 6 0 1 221)1 2 1 2 280)8 1 0 3 328)1
2 1 0 85)0* 7 1 0 222)3 9 1 0 281)8 6 1 2 330)0
3 0 0 91)8 2 2 1 223)8 2 7 0 282)1 10 0 1 330)0
0 2 0 98)0 0 0 2 225)2 6 2 1 283)0 6 7 0 331)1
1 2 0 102)7 3 5 0 225)5 4 3 1 285)0 2 0 3 332)3
3 1 0 109)2 1 0 2 227)3 5 6 0 285)4 8 0 2 332)8
2 2 0 115)6 6 3 0 227)9 3 1 2 289)1 3 2 2 333)0
4 0 0 122)5 5 4 0 229)3 3 7 0 290)3 4 8 0 333)1
0 0 1 123)0 5 1 1 229)6 6 0 2 290)7 10 3 0 334)6
1 0 1 126)7 2 0 2 233)4 9 2 0 292)5 7 3 1 334)9
3 2 0 134)3 3 2 1 234)1 7 5 0 297)3 5 4 1 335)1
0 3 0 134)9 7 2 0 235)7 0 4 1 298)1 11 0 0 336)8
4 1 0 135)9 4 5 0 239)6 8 4 0 298)6 0 5 1 337)9
2 0 1 137)4 0 6 0 240)8 8 1 1 298)8 1 5 1 339)3
1 3 0 138)3 1 6 0 242)8 5 3 1 299)5 3 0 3 339)3
2 3 0 148)1 3 0 2 243)2 1 4 1 299)7 11 1 0 342)0
5 0 0 153)1 8 0 0 245)0 4 1 2 300)2 4 2 2 342)7
3 0 1 153)5 7 0 1 247)1 4 7 0 301)4 2 5 1 343)4
4 2 0 156)9 4 2 1 247)7 9 0 1 301)8 8 6 0 343)5
3 3 0 163)2 2 6 0 248)5 6 6 0 302)9 0 9 0 343)9
5 1 0 164)1 6 4 0 250)8 7 2 1 303)8 9 5 0 344)1
0 4 0 170)7 6 1 1 251)1 2 4 1 304)3 1 9 0 345)3
0 1 1 171)2 8 1 0 252)0 10 0 0 306)2 5 8 0 345)5
1 4 0 173)4* 7 3 0 253)2 9 3 0 306)8 7 1 2 347)9*
4 0 1 173)6 4 0 2 256)4 0 8 0 309)7 4 0 3 348)9
1 1 1 173)9 5 5 0 256)6 7 0 2 310)9 7 7 0 349)0
2 4 0 181)4 0 3 1 257)4 1 8 0 311)3 2 9 0 349)3
2 1 1 181)8 3 6 0 257)8 10 1 0 311)8 9 2 1 349)7
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TABLE 3
continued

m
a

n
a

p
a

f
a

m
a

n
a

p
a

f
a

m
a

n
a

p
a

f
a

m
a

n
a

p
a

f
a

5 2 0 181)8 1 3 1 259)2* 3 4 1 311)9 6 4 1 350)2
4 3 0 182)2 8 2 0 263)8 5 1 2 313)9 3 5 1 350)2
6 0 0 183)7 5 2 1 264)2 5 7 0 315)1 10 4 0 350)6
6 1 0 193)0 2 3 1 264)5 2 8 0 315)7 10 1 1 350)8
3 4 0 193)9 4 6 0 270)2 6 3 1 316)2 11 2 0 350)8
3 1 1 194)2 5 0 2 272)3 8 5 0 320)1 5 2 2 354)8
5 0 1 196)4 3 3 1 273)3 0 2 2 320)1 8 3 1 355)3
5 3 0 204)0 7 4 0 274)0 10 2 0 321)5 9 0 2 355)9
0 5 0 206)0 0 1 2 274)1 1 2 2 321)5 3 9 0 356)0
1 5 0 208)2 8 0 1 274)1 4 4 1 322)3 11 0 1 358)6
6 2 0 208)2 7 1 1 274)3 7 6 0 322)4* 4 5 1 359)4
4 4 0 210)1* 0 7 0 275)4* 3 8 0 323)1
4 1 1 210)5 9 0 0 275)6 9 4 0 324)2
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TABLE 4

Structural natural frequencies of the uniform honeycomb cylinder (Hz)

m
s

n
s

f
s

m
s

n
s

f
s

m
s

n
s

f
s

m
s

n
s

f
s

m
s

n
s

f
s

1 4 39)0 4 5 156)5 6 6 230)7 7 5 272)0 2 13 315)3
1 3 41)7 3 3 157)5 4 10 232)2 4 0 272)2 8 4 315)5
1 5 50)9 4 7 160)9 5 9 232)8 2 12 272)7 8 3 320)6
1 2 66)8 2 9 162)1 2 11 232)8 6 2 273)0 8 7 322)4
1 6 70)3 4 4 171)5* 6 5 233)2 7 7 277)7* 6 11 325)0
2 5 77)1 4 8 177)9 6 7 236)0 7 4 277)8 8 2 326)7
2 4 81)9 3 9 178)4 6 4 242)7 5 0 279)0 3 13 327)8
2 6 86)9 1 10 187)8 3 1 244)4 3 12 285)7 5 12 329)4
1 7 94)4 5 6 191)3 3 11 246)5 6 1 285)8 8 1 331)5*
2 3 104)8 5 5 195)2 6 8 248)9 7 3 287)1 7 10 333)2
2 7 106)3 2 10 195)9 5 2 251)5 7 8 290)3 8 0 333)4
3 5 116)2 4 3 196)9 6 3 257)1* 6 0 290)7 8 8 335)1
3 6 116)9 5 7 196)9 4 1 259)0 5 11 292)9 4 13 345)7
1 8 122)2 3 2 198)3 5 10 260)4 6 10 294)3 8 9 353)2
1 1 124)0* 4 9 202)3 1 12 265)3 7 2 297)4 1 14 353)4
3 7 129)5 5 4 208)2* 1 0 265)6 4 12 304)6 9 4 357)0
3 4 129)6 3 10 210)5 4 11 266)5 7 1 305)5 9 5 357)6
2 8 132)0 5 8 211)2 2 0 267)4 1 13 308)1 9 3 358)9
2 2 147)8 2 1 212)4 6 9 268)6 7 0 308)6 6 12 359)9
3 8 150)8 1 11 225)1 3 0 268)8 7 9 308)9
4 6 153)1 5 3 228)3 5 1 271)1 8 5 313)2
1 9 153)4 4 2 228)9 7 6 271)7 8 6 315)2*
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TABLE 5

Best external and internal coupling between acoustic and structural modes at the eight minima marked in Figure 6

Frequency for
minimum sound
reduction index
f (Hz)

Acoustic natural
frequency and mode
close to the minima

f
manapa

(Hz)

Di!erence in (Hz)
between the minima
and acoustic natural

frequencies
Df

a
"f!f

manapa

Structural natural
frequency and mode
well coupling to the

acoustic mode
f
msms

(Hz)

Di!erence in (Hz)
between the minima

and structural
natural frequencies

Df
s
"f!f

msms

Internal coupling
coe$cient C int for

the structural mode
(m

s
, n

s
) of column 4

and the acoustic mode
(m

a
, n

a
, p

a
) of column 2

Generalized force
F
rs
(u, /

i
) calculated

for the structural
mode of column 4
at the resonance

frequency of column 1

f
1
"59)0 f

a
(0, 1, 0)"59)0 Df

a1
"0 f

s
(1, 1)"124)0 Df

s1
"!204)4 Cint

1
"0)1852 DF

rs?1,0
D"0)26

f
2
"87)0 f

a
(2, 1, 0)"85)0 Df

a2
"!2 f

s
(1, 1)"124)0 Df

s2
"!39)0 Cint

2
"!0)0617 DF

rs?1,1
D"0)12

f
3
"173 f

a
(1, 4, 0)"173)0 Df

a3
"!0)4 f

s
(4, 4)"171)5 Df

s3
"!1)9 Cint

3
"0)0339 DF

rs?4,4
D"0)23

f
4
"210 f

a
(4, 4, 0)"210)1 Df

a4
"!0)1 f

s
(1, 0)"208)2 Df

s4
"!1)9 Cint

4
"!0)0085 DF

rs?1,0
D"0)22

f
5
"260 f

a
(1, 3, 1)"259)2 Df

a5
"#0)8 f

s
(6, 3)"257)1 Df

s5
"2)1 Cint

5
"!0)0159 DF

rs?6,3
D"0)17

f
6
"275 f

a
(0, 7, 0)"275)4 Df

a6
"!0)4 f

s
(7, 7)"277)7 Df

s6
"!2)3 Cint

6
"0)0015 DF

rs?7,7
D"0)14

f
7
"321 f

a
(7, 6, 0)"322)4 Df

a7
"!2)3 f

s
(8, 6)"315)2 Df

s7
"!6)2 Cint

7
"!0)0093 DF

rs?8,6
D"0)17

f
8
"347 f

a
(7, 1, 2)"347)9 Df

a8
"!0)9 f

s
(8, 1)"331)5 Df

s8
"#16)4 Cint

8
"0)0464 DF

rs?8,1
D"0)14
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NOISE TRANSMISSION THROUGH CYLINDRICAL SHELLS 281
largely contribute to the sound transmission at each of the eight minima, as indicated by the

* symbols in Table 4, and the separation between the minima and cylinder natural
frequencies; Df

s
"f!f

msns
. These cylinder natural frequencies have been selected by

considering the e!ects of two factors. First, the best trade o! between the internal coupling
coe$cient C int and the lower di!erence between the minima frequency and the natural
frequency of the cylinder Df

s
(column 5). As described in section 2.5 the best interior

coupling is given for m
s
"m

a
$1 and decreases for higher odd values. Also, the greater the

di!erence between the minima frequency and the natural frequency of the cylinder, the
smaller is the o!-resonance response of the cylinder mode selected. The second factor used
to select the natural frequencies of the cylinder takes into account the excitation of the
external acoustic "eld on each mode. Column 6 gives the internal coupling coe$cient as
equation (33) with reference to the cavity acoustic mode order (m

a
, n

a
, p

a
) and cylinder

structural mode order (m
s
, n

s
) of the natural frequencies in columns 2 and 4 respectively.

Column 7 shows the generalized force F
rs
(u) for the new structural modes r

s
corresponding

exactly to the cylinder structural mode (m
s
, n

s
) of column 4 (note that this assumption is

valid only in the case of a cylinder without masses).
Table 5 suggests that the most e!ective minima, f

3
"173, f

5
"260 and f

8
"347 Hz are

all characterized by a resonant acoustic mode and a resonant structural mode with
a relatively high internal coupling, C int , and generalized force, F

rs
(u). For example, the

minimum at f
3
"173 Hz is characterized by the resonant acoustic mode m

a
, n

a
, p

a
"1, 4, 0,

with Df
a
"!0)4Hz, and by the resonant structural mode m

s
, n

s
"4, 4, with Df

s
"!1)9 Hz,

that have an internal coupling factor C int
3
"0)0339, and a generalized force DF

rs?4,4
D"0)23

at resonance frequency. The other minima that have been marked in Figure 6 are not as
e!ective as these three. The minima at f

1
"59 and f

2
"87 Hz are characterized by an

acoustic mode and a structural mode with relatively high coupling factor and generalized
force. However, the natural frequencies of the structural modes are well o!-resonance (in
fact, Df

s1
"!204)4 and Df

s2
"!39)0 Hz) so that the sound transmission to the resonant

cavity is not as e!ective as for the other three resonant frequencies listed above. The minima
at f

4
"210, f

6
"275 and f

7
"321 Hz are characterized by acoustic and structural mode

pairs with natural frequencies close to the resonance frequency, however, they are not so
e!ective because their internal coupling factors are relatively small (in fact, C int

4
"!0)0085,

C int
6
"0)0015 and C int

7
"!0)0093).

In general, it can be concluded that poor noise reduction occurs at frequencies where the
sound transmission is controlled by both a resonant acoustic cavity mode and a resonant
cylinder structural mode that are characterized by a good spatial coupling and an e$cient
coupling with the external acoustic excitation. This type of conclusion has been derived in
an empirical manner rather than from a rigorous mathematical analysis, and therefore it
should be considered only as a general engineering guideline for the description of the
sound transmission mechanisms to the interior of a cylinder acoustic cavity.

Finally, it is important to note that the noise reduction shown in Figure 6 assumes
relatively small values that are even negative for frequencies close to the marked resonances.
This is because a relatively small value of the absorption coe$cient A has been used in the
simulation so that in correspondence to frequencies close to the marked resonances the
average sound pressure of the air in the cylindrical cavity is higher than that of the external
plane wave incident to the cylinder.

3.2. MODAL EFFECT OF BLOCKING MASSES

The positions of the blocking masses attached to the cylinder have been chosen with
reference to the main sound transmission factors described in the previous section for the
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cylinder without masses, which are the acoustic excitation of the cylinder and the coupled
response of the cylinder and the interior cavity.

In section 2.2, it has been shown that the response of the cylinder with blocking masses is
characterized by a new set of natural frequencies f

rs
and normal modes r

s
consisting of

a linear combination of the modes of the uniform cylinder. Therefore, an appropriate choice
of the positions of the blocking masses can lead to a set of new structural modes r

s
which

cannot be e$ciently excited by the external acoustic "eld and do not e$ciently couple with
the cavity modes.

The external acoustic "eld, considered in this study, is assumed to be a plane wave with
wavenumber vector in the plane (x, h

i
"0) so that, considering the circumferential modal

order n
s
, only the symmetric modes of the cylinder, with reference to h"03, are excited.

Figure 7 shows the "rst 48 mode shapes of the uniform cylinder. The odd columns contain
the symmetric modes while the even columns show the antisymmetric modes. The
symmetric modes have antinodal line, i.e., maximum amplitude, for h"i(n/n

s
) with

i"0, 1,2, 2n
s
!1. If, for example, a set of masses is aligned on the cylinder surface along

the axial direction h
m
"03, a new set of structural modes r

s
is obtained that, as shown in

Figure 8, consist of the antisymmetric modes of the uniform cylinder and consist of
a entirely new set of mode shapes that in most cases have either a nodal line or a relatively
small amplitude for h"03. The mode shapes of Figure 8 correspond to the case where 14
masses of equal weight equal to =

k
"1)43 kg are attached along the axial direction for

h
m
"03 and for x

m
"¸/2$j¸/16 with j"1, 2, 3, 4, 5, 6, 7. The total weight of the 14 masses

is 20 kg, i.e., 8% of the cylinder weight which is 250 kg. Figure 8 shows that, except for a few
cases, the masses tend to pin the radial displacement of the cylinder along the axial line for
h"03 and many of the new cylinder modes are now close to being antisymmetric. The
modi"cation of the mode shape in the circumferential direction is determined along the
whole length of the cylinder by the uniform distribution of masses along the axial direction.
As a consequence of these modi"cations brought to the cylinder modes, a lower coupling
coe$cient is obtained between the external acoustic "eld and the cylinder vibration.

The new cylinder modes, shown in Figure 8, can also in#uence the e!ectiveness of the
coupling between the cylinder response and the cavity modes. In particular, the uniform
distribution of the masses along the length tends to modify the circumferential mode shapes
locally so that the coupling with the acoustic modes, having the same circumferential order,
is remarkably reduced. It is interesting to note that some of the new structural modes, as for
example the modes shown in row/column"1/1, 1/3, 1/7, 2/5, 2/8, 3/5, 4/3, 5/2, 5/7 and 6/7,
have a relatively large portion of the cylinder surface which has very little deformation
amplitude. These modes cannot e$ciently couple to the acoustic modes of the cavity which
are regular cosine or sine modes. Some of these modes have a peculiar form; for example, the
modes in row/column"3/5 and 5/7 have almost no radial displacement along the whole
circumference except in the vicinity of the masses where large displacements are shown. In
this case the masses are not pinning the radial displacements at the positions where they are
attached. On the contrary, they are vibrating with large amplitudes which indicates that
they are storing most of the kinetic energy of the modal vibration which is balanced by the
strain energy given by the local and relatively large deformation of the cylinder (like
a vibration neutralizer).

The positions of the blocking masses on the cylinder discussed in this section have been
chosen with reference to the considerations described above and after a certain number of
trials where the masses have been attached on a set of con"gurations chosen intuitively. For
example, the e!ects of masses applied at h

m
"30, 45, 60 and 903 have been considered. Also

di!erent distributions of the blocking masses along the axial direction have been
investigated. This process of using intuitive rules, based on the observations of the sound



Figure 7. First 48 normal modes of the uniform cylinder.
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Figure 8. First 48 normal modes of the uniform cylinder with 14 blocking masses as from case 4 of Table 6.
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transmission phenomena for the uniform cylinder described previously, and based on the
iterative learning process, has led to some conclusions about the ideal position for the
blocking masses. However, this study could be improved by developing an optimization
approach which would indicate particular geometrical positions for the blocking masses
that may give better results than those obtained in this study.

3.3. SPECTRUM OF THE NOISE REDUCTION FOR THE CYLINDER WITH MASSES

The spectrum of the noise reduction for the cylinder with a line of block masses of the
same mass, equal to =

k
"1)43 kg, attached along the axial direction for h

m
"03 and for

x
m
"¸/2$j¸/16 with j"1, 2, 3, 4, 5, 6, 7 is shown in Figure 9. The faint line shows the

noise reduction for the cylinder without masses whilst the solid line shows the noise
reduction for the cylinder with the attached line of blocking masses. Very little e!ect is
achieved below 180 Hz; indeed, at very low frequency an increase in the sound transmission,
rather than a reduction, is shown. However, above 180 Hz the results are very good and
reductions of about 10 dB are found.

This type of reduction is very promising but a question which arises is whether this
reduction is due to the modi"cations of the cylinder mode shapes brought about by the
blocking masses or is just due to the increased total mass of the cylinder. The answer to this
question is given in Figure 10 where the noise reduction for the cylinder with a smeared
mass over the surface equal to 20 kg, which is the total of the 14 block masses is shown.
From this plot it is evident that, by smearing the equivalent total weight of the block masses
over the surface of the cylinder, very little bene"t is achieved. Therefore, the reductions
shown in Figure 9 are indeed due to the modi"cation of the cylinder mode shapes which
produces less e$cient excitation of the structure and a less e$cient weak-coupling between
the structural and acoustic modes.
Figure 9. Noise reduction for the honeycomb cylinder with 14 masses (solid line) of 1)4 kg whose positions
correspond to case 4 of Table 6 and h

i
"03 and without masses (faint line) excited by a plane acoustic wave of unit

amplitude and incidence angle /
i
"453.



Figure 10. Noise reduction for the honeycomb cylinder with a smeared mass of 20 kg over the cylinder lateral
surface (00) and without masses (**) excited by a plane acoustic wave of unit amplitude and incidence angle
/
i
"453.
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3.4. ONE-THIRD OCTAVE FREQUENCY BAND ANALYSIS

In this section the reductions of sound transmission to the cylinder interior due to the
blocking masses are summarized in one-third octave frequency bands. Together with the
analytical study of sections 3.2 and 3.3, a synthesis study is presented which provides an
engineering indication of the type of sound transmission reduction that can be achieved.

The noise reduction for the ith one-third octave frequency band has been calculated using
the following relation:

NR(u
ci
)"

1

u
ui
!u

li
P

uui

uli

NR(u) du+

1

u
ui
!u

li

Ni
+
k/1

NR(u
k
)Du

i
, (46)

where u
ci
, u

li
and u

ui
are, respectively, the centre, lower and upper frequencies of the ith

one-third octave frequency band, N
i

is the number of frequency samples used for the
discretized calculation of the ith one-third octave frequency band noise reduction and
Du

i
"(u

ui
!u

li
)/N

i
.

The excitation considered in this section is still an harmonic plane wave oriented with
angles h

i
"03 and /

i
"453. Therefore, only the line con"guration of the block masses has

been considered, because of their clear advantage in the reduction of the external coupling
between the incident plane wave and the cylinder modal response. Four di!erent
distributions of the masses along the axial direction have been considered as described in
Table 6. The individual masses considered in each case all have equal weight, chosen in such
a way that the total added weight is always 8% of the cylinder weight. A "fth case of
a uniform cylinder, with 20 kg mass smeared on its surface, has been used as the benchmark
to evaluate the real advantage gained by the blocking masses. The calculation has
considered the "rst 15 one-third octave frequency band containing frequencies up to
703 Hz.



TABLE 6

Positions and mass of the blocking masses

Case
No.

No. of
masses

Masses
(kg)

Angular
positions (rad)

Axial position with reference to the cylinder length
x
m
"¸/2$j¸/16

1 4 5 0 j"2, 6
2 8 2)5 0 j"1, 3, 5, 7
3 12 1)7 0 j"1, 2, 3, 5, 6, 7
4 14 1)4 0 j"1, 2, 3, 4, 5, 6, 7

5 20 kg smeared over the surface of the cylinder

Figure 11. Di!erence between the noise reduction for the cylinder with additional masses and the cylinder
without masses when the cylinder is excited by a plane acoustic wave of unit amplitude and incidence angle
/
i
"453. , case 1; , case 2; , case 3; , case 4; , case 5.
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Figure 11 shows the di!erence between the noise reduction for the cylinder with the
masses (cases 1}4) or with the smeared mass over the cylinder surface (case 5) and the noise
reduction for the uniform cylinder. In general, the results obtained indicate that the cases
with point masses tend to give greater noise reduction results than the case with a smeared
mass over the surface of the cylinder. For all con"gurations of the masses chosen, good
results are obtained for the frequency bands with centre frequency equal and higher than
160 Hz. In contrast for the bands with centre frequency 25 and 31)5 Hz the noise reduction
is lower when blocking masses or smeared equivalent mass are used than in the case of
a uniform cylinder. In general, the con"guration giving best results is that of case number 4.

4. REDUCED ANALYSIS

The calculation of the coupled response of the cylinder and acoustic cavity, with blocking
masses attached, requires a relatively large number of summations both over the cylinder
modes and the cavity modes as can be deduced from equations (18), (25) and (44). This has
meant long computational simulations, particularly to get the noise reduction for the "rst
15 one-third octave frequency bands. A possible solution to this problem is the reduction of
the summations either over the acoustic or the structural modes. For example, the
expression of the square sound pressure at a given frequency x in equation (44) could be
reduced by taking into account only the acoustic modes (m

a
, n

a
, p

a
) whose natural
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frequencies u
manapa

are within a band of centre frequency x. This type of reduction of the
analysis will be referred to as &&acoustic -agging''. Similarly, the summation of the structural
response in the (m

s
, n

s
)th component, given by equation (25), can be reduced by taking into

account only the new structural modes (r
s
) whose natural frequencies u

rs
are within a band

of centre frequency x. This type of reduction of the analysis will be referred to as &&structural
-agging''. Likewise, the summation over the structural m

s
modes into equation (44) can be

reduced by taking into account only the modes that are strongly coupled to the acoustic
modes. This type of reduction of the analysis will be referred to as &&coupling -agging''.

4.1. &&ACOUSTIC FLAGGING''

The selection of the acoustic modes for the reduced analysis has been done with reference
to frequency}response considerations. From the plot of Figure 6 it is evident that the noise
reduction is characterized by a set of resonances which are determined by the &&dominant''
acoustic modes. The acoustic modes are well separated and at each frequency the sound
pressure in the cavity is determined by a &&dominant'' mode whose contribution is much
higher than that of the &&residual'' modes. The parameter normally used to identify the
prevalence of the response due to a &&dominant'' mode compared to that of the &&residual''
modes is the modal overlap M (u) [28]

M(u)"Dun (u), (47)

where Du is the half-power bandwidth of any one mode at a frequency u, and n (u) is the
equivalent modal density, i.e., the average number of modes per unit angular frequency.
Therefore, for low values of the modal overlap, normally for M(u)(1, the steady state
sound pressure in the cylindrical cavity at a certain frequency u can be approximated by
a set of modes with natural frequencies contained in a frequency band u!Du)u

manapa
)u#Du.

Figure 12 shows a set of four plots where the noise reduction at frequency x has been
calculated for the cylinder with four masses (case 1 of Table 6), taking into account the
modes with natural frequencies such that u!u

1
)u

manapa
)u#u

1
where u

1
/2n"5, 10,

20, 40 Hz respectively. Because a "xed frequency range has been taken into account, an
additional constraint of a lower number of modes to be accounted for has been added. In
this way, at low frequencies, where the modal overlap is very small, the frequency range for
the selection of the modes is enlarged and enough modes are accounted for the response. In
the four plots shown in Figure 12 the lower number of modes to be taken into account for
the response has been "xed at 6.

The simulations carried out indicate that an appropriate choice of the frequency range for
the selection of the modes used in the computation of equation (44), and of the lower
number of modes to be accounted for at each frequency, gives an accurate prediction of the
noise reduction in the whole frequency range 0}353 Hz. In particular, Figure 12 shows that
when the modes with natural frequency in a frequency band of $40 Hz of the excitation
frequency and at least six acoustic modes are accounted for at each frequency, the calculated
sound pressure in the cylinder is almost the same as that calculated with the full formulation
at every frequency.

4.2. &&STRUCTURAL FLAGGING''

Similar to the acoustic #agging procedure, the structural #agging has been carried out
with reference to frequency response considerations. In the 0}353 Hz frequency range the



Figure 12. Noise reduction for the honeycomb cylinder with four masses of 5 kg positioned at x"j¸/8 with
j"1, 3, 5, 7 and h

i
"03 excited by a plane acoustic wave of unit amplitude and incidence angle /

i
"453. **:

complete analysis. 00: reduced analysis that calculates the acoustic pressure in the cylinder cavity at each
frequency considering only the acoustic modes with natural frequency within a frequency band of $5 Hz (top
left), $10 Hz (top right), $20 Hz (bottom left) and $40 Hz (bottom right). A lower limit for the number of
acoustic modes accounted at each frequency is "xed to 6 in the four cases.
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cylinder response, equation (25), is characterized by a set of resonances which are
determined by the &&dominant'' new cylinder structural modes. Therefore, also in this case
the modal overlap parameter criterion has been used to select the frequency band at each
frequency u that includes the natural frequencies of the new structural modes that mainly
contribute to the response of the cylinder. In conclusion, the steady state response of the
cylinder at a certain frequency u given by equation (25) has been approximated by a set of
new structural modes r

s
with natural frequencies contained in a frequency band

u!u
1
)u

rs
)u#u

1
.

Figure 13 shows a set of four plots where the noise reduction at a frequency x has been
calculated for the cylinder with four masses (case 1 of Table 6) taking into account the
modes with natural frequencies such that u!u

1
)u

rs
)u#u

1
where u

1
/2n"30, 40,

50, 60 Hz in the four plots respectively. Also in this case, because a "xed frequency range has
been used, an additional constraint of a lower number of 12 new structural modes has been
accounted for. In this way, at low frequencies, where the modal overlap is very small, the
frequency range for the selection of the modes is enlarged and enough modes are accounted
for the response.

The results obtained from the four structural #agging cases considered indicates that the
summation over the new structural modes r

s
, equation (25), can be limited to a much

smaller number of modes without unacceptably reducing the accuracy in the calculation of
the noise reduction in the whole frequency range 0}353 Hz. In particular, Figure 13 shows



Figure 13. Noise reduction for the honeycomb cylinder with four masses of 5 kg positioned at x"j¸/8 with
j"1, 3, 5, 7 and h

i
"03 excited by a plane acoustic wave of unit amplitude and incidence angle /

i
"453. **:

complete analysis. 00: reduced analysis that calculates the acoustic pressure in the cylinder cavity at each
frequency considering only the cylinder modes with natural frequency within a frequency band of $30 (top left),
$40 (top right), $50 (bottom left) and $60 Hz (bottom right). A lower limit for the number of cylinder modes
accounted at each frequency is "xed to 12 in the four cases.
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that when the new structural modes with natural frequencies in a frequency band of
$60 Hz and at least 12 modes are accounted for at each frequency, the calculated cavity
sound pressure is quite close to that calculated with the full formulation at every frequency.
This is true for all frequencies except those below about 30 Hz. At very low frequency the
sound pressure in the cylinder is very low and therefore there is a bigger sensitivity to the
&&structural #agging''.

Comparing the results obtained for the two types of #agging it is evident that the
structural #agging requires a larger number of modes at each frequency. This is because the
modal overlap factor for the cylinder modes is higher than for the cavity modes.

4.3. &&COUPLING FLAGGING''

A "nal possibility for reducing the number of summations in equation (44) is provided by
the summation over the structural m

s
modes that can be reduced by taking into account

only the modes that are strongly coupled to the acoustic modes. According to section 2.5 the
coupling coe$cient of structural and acoustic modes is equal to zero C int

msmanapa
(u)"0 when

m
s
"m

a
, m

a
$2, m

a
$4,2. Also, the largest coupling coe$cient is given by m

s
"m

a
$1

and it progressively reduces for m
s
"m

a
$a with a"3, 5, 7,2, a

max
.

Figure 14 shows a set of four plots where the noise reduction has been calculated for the
cylinder with four masses (case 1 of Table 6) taking into account the structural modes of



Figure 14. Noise reduction for the honeycomb cylinder with four masses of 5 kg positioned at x"j¸/8 with
j"1, 3, 5, 7 and h

i
"03 excited by a plane acoustic wave of unit amplitude and incidence angle /

i
"453. **:

complete analysis.00: reduced analysis that takes into account for the calculation of the acoustic pressure in the
cylinder cavity related to each acoustic modes a limited number of structural modes with m

s
"m

a
$1 (top right),

m
s
"m

a
$1, 3 (top left), m

s
"m

a
$1, 3, 5 (bottom left) and m

s
"m

a
$1, 3, 5, 7 (bottom right).
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order m
s
so that m

s
"m

a
#1, m

s
"m

a
$1, 3, m

s
"m

a
$1, 3, 5 and m

s
"m

a
$1, 3, 5, 7 in

the four cases. The n
s
mode order is taken to be the same as the circumferential mode order

n
a
of each acoustic mode taken into account in the summation of equation (44). The results

of the simulations suggest that the value of the noise reduction, taking into account the
cylinder modes with axial mode order m

s
"m

a
$1, 3, 5, is very accurate. In practice, even

by taking into account only the cylinder modes with axial mode order m
s
"m

a
$1, 3, the

calculated noise reduction can be considered to be acceptable.

4.4. NOISE REDUCTION USING ACOUSTIC, STRUCTURAL AND MODAL FLAGGING

Having assessed the limits for the frequency range and number of modes required to
implement the acoustic, structural and modal #agging a "nal analysis was performed where
the noise reduction was calculated for the cylinder with four masses (case 1 of Table 6). At
each frequency the acoustic modes with natural frequency included in the frequency range
$40 Hz with a lower limit for the acoustic modes equal to 6, the new structural modes of
the cylinder with natural frequency included in the frequency range $60 Hz with a lower
limit for the acoustic modes equal to 12, and the cylinder structural modes of indexes
m

s
"m

a
$1, 3, 5 are taken into account in the summations of equations (25) and (44).

Figure 15 shows the noise reduction calculated either taking into account all the modes
(faint lines) or by implementing simultaneously the acoustic, structural and modal #agging.
The result obtained indicates that except at low frequency, there is good agreement between



Figure 15. Noise reduction for the honeycomb cylinder with four masses of 5 kg positioned at x"j¸/8 with
j"1, 3, 5, 7 and h

i
"03 excited by a plane acoustic wave of unit amplitude and incidence angle /

i
"453. **:

complete analysis.00: reduced analysis that consists of (a) an acoustic reduced analysis that considers at each
frequency the modes with natural frequencies in a band of $40 Hz with a lower number of modes equal to 6;
(b) a structural reduced analysis that considers at each frequency the modes with natural frequencies in a band of
$70 Hz with a lower number of modes equal to 12 and (c) a mode reduced analysis that considers for each
acoustic mode a limited number of structural modes with m

s
"m

a
$1, 3, 5.
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the two simulations. This result is even more relevant when one-third octave frequency
band analysis is carried out since the noise reduction is averaged over the frequency band so
that the small o!-resonance mismatching shown in Figure 15 produces very little e!ect on
each value calculated for the one-third octave frequency band noise reduction.

The numerical calculations for the full or reduced models have been performed with the
same computer and in the same working conditions. The time required for the reduced
analysis has been calculated to be about 3% of the time required for the full analysis. In
general, the most e!ective #agging procedure is the acoustic #agging that most signi"cantly
reduces the computational time. Structural #agging still requires a relatively large number
of modes and therefore is not as e!ective as the acoustic #agging. Finally, although the
coupling #agging can reduce the last term of equation (44) to few summations, it does not
give the same bene"ts as for the acoustic and structural #agging.

The possibility of reducing the analysis to a few summations over the acoustic and new
structural modes at each frequency gives the opportunity of calculating the noise reduction
at relatively high frequencies in a relatively short time. However, it must be pointed out that,
as the upper limit of frequency analysis rises, the modal overlap factor increases and
therefore the modes with natural frequency within a larger frequency band have to be
accounted for as the frequency rises. When analysis up to higher frequencies are required it
would be ideal to derive an algorithm able to vary the band width for selection of the
acoustic and new structural modes at each frequency. This is certainly a more e$cient way
of reducing the analysis, that should allow the numerical calculations up to several
one-third octave frequency bands.
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5. CONCLUSIONS

The study presented in this paper has investigated the sound transmission for incident
harmonic plane waves to the interior of a honeycomb cylinder "lled by air. In particular, the
e!ects of blocking masses placed on the surface of the cylinder has been investigated in
order to access the possibility of reducing the external coupling (acoustic plane wave
excitation*cylinder response) and internal coupling (cylinder vibration*cavity response)
of the system.

For the purposes of this study a modal interaction analysis (MIA) has been developed
which is valid in the low-intermediate frequency range and allows the steady state acoustic
response of the cavity to be calculated at discrete frequencies for harmonic external plane
waves. In this way, the noise reduction at discrete frequencies within one-third octave
frequency bands has been evaluated.

The study has considered a set of cases where block masses, with total weight equal to 8%
of the cylinder weight, are attached to the cylinder. The simulations carried out show
a substantial reduction of the sound transmission in many of the "rst 15 one-third octave
frequency bands. The blocking masses act by modifying the orientation and shape of the
cylinder normal modes. In particular, the circumferential re-orientation reduces the
coupling mechanism between the incident acoustic "eld and the cylinder modes.
Alternatively, the variation of the structural modes shape, both in the axial and
circumferential directions, reduces the coupling between the cylinder modes and the
acoustic modes of the interior.

Also, the number of structural and acoustic modes required to predict accurately the
sound transmission to the cylinder cavity has been investigated. In particular, the e!ect of
neglecting o!-resonance acoustic and structural modes has been considered. It has been
shown that in order to have an accurate prediction of the sound transmission it is necessary
to take into account the acoustic and structural modes with natural frequencies within an
interval of $40 and $60 Hz of the excitation frequency respectively. Also, the simulations
carried out have shown that, in order to represent correctly the coupling e!ect between the
structural and acoustic modes, for each acoustic mode of order (m

a
, n

a
, p

a
) it is necessary to

account only for the structural modes with n
s
"n

a
and m

s
"m

a
$a with a"1, 3,

5,2, a
max

.
Finally, it has been found that the time required to compute the sound transmission,

for a practical example, in a frequency range of 0}353 Hz with the minimum
number of acoustic and structural modes required to compute an accurate response at
each frequency, can be reduced to 3% of that necessary for the computation of the full
response.
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APPENDIX A: NATURAL FREQUENCIES AND NORMAL MODES
OF A CYLINDRICAL CAVITY

The acoustic natural frequencies of a cylindrical cavity are derived from the solution of
the homogeneous acoustic wave equation in terms of the acoustic pressure p:
+2p!pK /c2"0; where pK is the second partial derivative with respect to time and +2 is the
Laplacian operator with reference to cylindrical co-ordinates x, r, h. Assuming harmonic
time dependence of the form p"p

0
exp( jut), the homogeneous Helmoholtz equation

+2p
0
#(u/c)2p

0
"0 is obtained which has in"nite solutions that could be written in the

form p
manapa

"U
manapa

(x, r, h) exp( ju
manapa

t) . U
manapa

(x, r, h) are the cavity normal modes and
u

manapa
are the correspondent natural circular frequencies in (rad/s). For absorbent walls the

normal modes and the natural frequencies are complex. However, for a cylinder with rigid
walls and closed ends the normal modes and natural frequencies are real and are given by
the following relations [26]:
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where the two equations (A.1,2) for the normal modes are required to represent the even and
odd circumferential mode shapes. The terms j

pana
are given in reference [26] and J

na
is the

Bessel function of the "rst kind and order n
a
.

The modes of equations (A.1,2) are normalized such that
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and b"2 if n
a
"0 or b"4 if n

a
O0.

APPENDIX B: NOMENCLATURE

B.1. NOTATION USED FOR THE MODES

m
s
"1, 2,2,M

s
axial structural mode number for the cylinder

n
s
"0, 1,2, N

s
circumferential structural mode number for the
cylinder

r
s
"1, 2,2, R

s
structural mode number for the cylinder with
block masses

m
a
"0, 1,2,M

a
axial acoustic mode number for the cylinder cavity

n
a
"0, 1,2,N

a
circumferential acoustic mode number for the
cylinder cavity

p
a
"0, 1,2,P

a
radial acoustic mode number for the cylinder
cavity

u, v, w in-plane (axial), tangential and #exural (normal to
circumference) components of the structural mode



296 P. GARDONIO E¹ A¸.
W
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"sinA
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W
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h) H even and odd structural modes
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U
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"cosA
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¸ B sin(n
a
h) J

na
(j
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R/R

i
) H even and odd acoustic modes

H
msns

(r
s
, /)"cos(n

s
h) e~+ksx acoustic pressure distribution on the external

cylinder surface
r
s

position on the internal surface of the cylinder
H

n
Hankel function of the "rst kind and nth order

J
na

Bessel function of the "rst kind of order n
a

p
msns

(t) , q
msns

(t) generalized co-ordinates of the even and odd
structural modes

A
msns

B
msns

C
msns

relative contributions of the u, v and w
displacements in the &&new'' structural mode

B.2. PHYSICAL PARAMETERS

A absorption
c speed of sound
dS"R dhdx in"nitesimal element of the cylinder surface
h"t

1
#t

2
#t

3
thickness of the cylinder wall

k
x
"(u/c) cos/ axial wave number

k
z
"(u/c) sin/ normal wave number

¸ length of the cylinder
M

cyl
"(o

1
t
1
#o

2
t
2
#o

3
t
3
)S

i
mass of the cylinder

MM
cyl
"M

cyl
/S

i
mass per unit area of the cylinder with honeycomb wall

R
e
, R

i
external and internal radius of the cylinder

S
e
"2nR

e
¸ external surface area of the cylinder

S
i
"2nR

i
¸ internal surface area of the cylinder

t
1
, t

2
, t

3
thickness of the external faceplate, internal faceplate and
honeycomb core

<
cav

"nR2
i
¸ volume of the cylindrical cavity

<
wall

"n(R2
e
!R2

i
)¸ volume of the cylinder wall

/
i

angle of incidence of the external acoustic "eld to the x-axis of
the cylinder

g
manapa

modal loss factor for the cavity
g
msns

modal loss factor for the cylinder vibration (the acoustic
damping e!ect due to the cavity is also taken into account)

g
str

structural loss factor of the cylinder wall
h circumferential co-ordinate (in rad)
h
i

angle of incidence of the external acoustic "eld to the
circumferential co-ordinate h of the cylinder

h
m

circumferential co-ordinate (in rad) of the blocking masses
j
pana

coe$cient for acoustical modes of a cylinder, from table 6. 2 of
reference [26] (these data are stored in a matrix whose row's
correspond to values of p

a
and whose columns correspond to

values of n
a
)

K
manapa

acoustic modal mass
K

rs
"1/4M

cyl
modal mass for the structural modal summation
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o
1
, o

2
, o

3
density of the external faceplate, internal faceplate and
honeycomb core

o
a

density of air
o
c
"M

cyl
/<

wall
average density of the cylinder wall

u frequency (rad/s)
u

manapa
natural frequency of the (m

a
, n

a
, p

a
)th acoustic mode of

a cylindrical cavity with rigid wall (rad/s)
u

msns
natural frequency of the (m

s
, n

s
)th structural mode considering

a honeycomb cylinder (rad/s)
u

rs
natural frequency of the r

s
th structural mode considering

a honeycomb cylinder with applied mass(es) (rad/s)
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